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DESIGN OF CIRCULAR CYLINDRICAL SHELLS OF MINIMUM WEIGHT
WITH FIXED NATURAL OSCILLATION FREQUENCIES*

A.S. BRATUS'

Approximate solutions are obtained, using asymptotic methods, of the
problem of the optimum design of cylindrical shells of variable thickness,
of minimum weight for fixed natural oscillation frequencies in the axis-
ymmetric and non-axisymmetric cases. Qualitative patterns of the thickness
distribution for optimum solutions are obtained and analyzed.

1. Basic equations. Consider the natural oscillations of a circular cylindrical
shell of variable thickness. We assume that the mean surface is specified in curvilinear
coordinates x and @ in such a way that the first quadratic form has the form R? (dz® + da?),
where R is the radius of the circular cylindrical shell, x varies along the generatrix, and

@ is an angular coordinate that varies in the transverse direction. We shall consider shells
with straight cutoffs, that, in dimensionless variables (7, @), occupy the rectangular region.

D={r,0:0<z<k 0<a<a,<2n}, k=1UR

where | is the shell length.

The set of equations in displacements, which determines the natural oscillations of a
circular cylindrical shell of variable thickness & (z,®) can be expressed (e.g., /1/) in the
form

A(R) z (x, @) =Lhz (z, a); A (B)=| Aij B Ji,j=1,2,8 (r.1)
;“=p_R'_“.‘_E')_mz Adp=———h 2= _‘_%‘_V‘. jah_i_

1 —
Al!=—P‘Th—'_—'—'&ﬁ'h_"

Ay (h) =1 —-—h An(h)== ’MT‘

— 0 6
g (h) = — LB a 3

) Ry .-

oz " oz x| oa
sz —m g +‘xaa""°a;]

Ay ()= —— b — 82 [2(1-»)-3;}: o +

a o G
o+ W |

*prikl.Matem.Mekhan.,47,5,805-814,1983



651

Ast ()= — b + 82| 2(1 — ) 555 W = +

A a il a
b B+ e |
: » * »
Ass (B) =k + 8¢ [%h'(-;:T -H*'Tﬁz‘} +‘3.7h3(75a1‘+

& & #
L= )"’ 2l =W B m]

where p is Poisson's ratio, §,® = (12 R®™, and h = h(z, ) is the shell thickness.
We denote by z(x,a) in (1.1l) the vector function of displacements z* = (u (2, @), v(z, @)
w(z, o)), where u, v, w are the displacement components in the directions of the generatrix,
the directrix, and of the normal to the cylindrical shell, respectively, A is the problem
eigenvalue, p is the material density, E is Young's modulus, and @ is the oscillation freguency.
The operator A4 (k) is formally selfconjugate, which means that for any smooth vector
functions z and 2z, that vanigh in the neighbourhood of the I' boundary of region D the identity

(4 (B) 21, 2) = (21, 4 (R) z,) (1.2)
holds.
Here and henceforth parentheses denote a scalar product in the three-component vector
space of the functions

(Zl, Zg) = SS (ulu, -+ 1os + wlwg) dzda
D

If the vector functions z and 2, do not become identically zero in the I neighbourhood,
the boundary conditions which must be imposed on the components of the vector z; to satisfy Eq.
(1.2) are called selfconjugate. Henceforth we will consider only one of the so-called self
conjugate boundary conditions /2/, namely those of hinged support (the Navier conditions)

@r=(5), =0 (g=+p2) =0 (1.3)
(&)r=0

The solution of the boundary value problem (1.1),(1.3) is understood in the weak sense.
Let V be the set of vector functions z(z, a) with components from (= (D) that satisfy (1.3).
We denote by H, (D) the Sobolev space of three-component vector functions which have square
summable derivatives up to the second order inclusive. The closure of the set V in H, (D) is
denoted by W (D). The vector function z& W(D) is the solution of problem (1.1),(1.3) in
the weak sense, if for any vector function z, & W (D) the equation

(4 (B) 2, 2)) = 4 (hz, 2))
holds.
Let us assume that the distribution of the circular cylindrical shell thicknesses is sel-
ected from the set of functions Q defined by the equation

Q={h(z, a): SDS () + (5 ]deta<e, O<a<hi@a< b] (1.4)

where c,a,b are positive constants selected so that the set 0 is non-empty.

The first of conditions (1.4) defines the limit on the growth of the derivatives of the
admissible thickness distribution. The necessity for this condition follows from the results
obtained in /3/ and guarantees the existence of a solution of the optimization problem which
will be considered below.

From the mechanics point of view the absence of the first condition (1.4) means that the
thickness gradient is arbitrary, which raises doubts about the validity of the hypothesis of
the rectilinear normal element which is the basis of the theory of thin shell deformations.

The second of conditions (1.4) limits the magnitude of the minimum and maximum thickness
distribution.

The compactness of the imbedding H, (D) - L, (D) implies that /4/ the spectral problem

(1.1) has a sequence of non-zero solutions 2 i=1,2,3, ...), that corresponds to the sequences
of eigenvalues A% such that

(A4 (B) z', 2) = My (hzhh, 2), V= W (D)
O<<MmiKMmi. .. <MK
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The subscript h on the functions s\ and the numbers A! is introduced to emphasise that
the solution of problem (1.1) depends on the selected thickness distribution &L (z,a) = Q.

2. Statement of the optimization problem. In many cases the natural oscillations
of circular cylindrical shells can be separated into predominantly longitudinal, and transverse
oscillations (for a fuller classification of .oscillations see /2/). Each form of oscillation
has its own eigenvalue for cne and the same eigenfunction.

Consider the problem of designing a minimum volume (weight) shell for which the fregquency
of one of the predominant oscillation forms is not less than some specified fixed value. The
design consists of making a suitable selection of the shell thickness distribution Q specified
by Egq.(1.4).

Let A be a fixed positive number, and A(h) the smallest of the eigenvalues that corresp-
ond to predominantly transverse oscillations h&e Q. In this case the problem can be form-
ulated as follows. Find an A& Q such that

§$h (2, @) doda > min, A m)>H°
D h

Obviously the solution of problem (2.1) does not exist for all A°. As a reasonable A°
we can take the smallest of the eigenvalues that corresponds to predominantly transverse osc-
illations for a shell of constant thickness hy a-<{hy<b. Problem (2.1) then becomes a
problem of designing an optimal shell of variable-thickness of minimum volume (weight) whose
eigenvalue, which corresponds to one of the chosen form of predominant oscillations, is not
less than the respective eigenvalue of a shell of constant thickness.

3. The asymptotic approach to the problem of optimization. The sclution of
the problem is linked to the need for a multiple variation of h from Q and to finding a sol-
ution of (1.1),(1.3), which gives rise to well-known difficulties. On the other hand, inmany
important cases the range variation of the thickness distribution is very narrow, which enables
us to use asymptotic methods by considering the shell as a weakly controllable system.

Let us assume that the function h(z, a) & Q varies as follows:

h (z, &) = hy -+ ehy (z, @); & > 0, hy = const (3.1
The set Q defined by Eqg.(l.6) then becomes the set

o e § (B + (e < 1<)
D

Without loss of generality, we can assume that hy = 1, which can always be achieved by
introducing the new dimensionless function

h’(z,a)zl.%%g’)_=1 +g.’2(_‘ho;2)_=1+gh1'(z,a) (3.3)
Hence the limit on the minimum and maximum value of h(z,a) in (1.4) i.e. O<a<{h(z,

a) << b becomes the limit [A (z,@) |1, if a=hy—e and b =hy-+ e, i.e. when the
maximum range of variation of the thickness A’ is equal to Z2e.

In deriving the equations of the theory of shells it is assumed that quantities of the
order of (h/R)® can be neglected. Allowing for this, we have

(ho/R) <€ ehy/R ~ & hy/R << ho/R

from which follows that &/R << e<€ 1, otherwise the guantity e h/R becomes comparable with
the error of the mathematical model of the problem.

Henceforth the primes on the functions h and &, are omitted for convenience.

According to Rellich's theorem /5-7/ the spectrum of the operator 4 (k) defined by Egs.
(1.1) for h =1 + eh, can be represented in the form of an analytic perturbation of the spec-
trum of the operator A (k) = A°. The operator A° is defined by formulas (1.1), if we set

h(r,a) =1. Using (3.1) we represent the operator A (k) in the form of a sum in powers of

the parameter e s

A= D e () (3.4)

To determine the components of the operator A! (k) it is necessary to substitute in form-
ulas (1.1) hy (%, @), for h(r, @) and 3k, (z, @), for K®(x, @), while the coefficient §¢¢ (taking
into account the substitution (3,3)) becomes equal to §;> = kg (12 RH)™.

The eigenvalues of the spectral problem and the eigenfunctions may be represented in the
form of series in powers of e



653

o

AF(hy= 3 ek i(hy), zF =,-§., ghzk i, (3.5)

i=0

Substituting (3.4) into (3.5) and collecting terms of the zeroth and first power of e,
we obtain the boundary value problem for the zeroth and first approximation of the input spec-
tral problem (1.1) of the form

(Aozk, 9, z)== Ak, 0(zk, o, Z), Ve W (D) (3.6)

(A%25:Y, 2) + (At (hy) 280, z) == Ab.0 (25,1 g)  AKO (Ry2F.0, 2) 4 AKL () (200, 2), Vz == W (D) (3.7)

Setting z = z%° in (3.6) and (3.7) and using the selfconjugacy of the operator A° we
obtain the formula
AR L (hy) = (A" (By) 250, K 0) — AK.O (Bygki0, Zhio) (3.8)

(29, 25 0) =1

which determines the first correction to the calculation of the eigenvalue A" (k) in the form
of a linear functional of &, € Q.
Taking the above considerations into account, we revert to the input problem (2.1). By
virtue of .
(§ + en)dzda=S$ +e (( hdzda

D D
where S is the shell surface area, the input functional takes the form

Sgh,dzda_,u;in, e, (3.9)
D 1

Selecting A° = Ak.¢in (2.1) and using expansion (3.5) and the arbitrariness of &, we ob~-
tain the limit of the magnitude of the first correction of the eigenvalue A' (k) in the form

ANL(h) >0, b€ Gy (3.10)
where the quantity Ak? (k) is defined by Eq.(3.8). Finally we cbtain the problem
§§ hdzda—min, A1) >0, MEQ (3.11)
D hs

The set of functions h; . is such that h, &@Q, and M1 (k) >0 are convex and closed in
the topology of Sobolev space, and are summable with the square of the functions together with
their derivatives up to the first order. Hence the linear functional (3.9) reaches its max-
imum on the set indicated, and any local extremum is also global. It can be shown /8/ that
in conformity with functional (3.9) the solution of problem (3.11) differs from the optimal
in the class of distributions Q by a quantity of the order of €2, when b—~—a = 2¢.

The solution of problem (3.11) is made easier by the fact that to calculate the linear
functional A*?!(h;) it is sufficient to know only the eigenfunctions and eigenvalues of the
unperturbed problem.

4. Axisymmetric oscillations. Consider the axisymmetric oscillations of a freely
supported circular cylindrical shell. The form of oscillations is in this case determined by
the vector function of a single variable 2z,ze& [0, kl,k = l/R. The equations of state (1.1)
decompose into the boundary value problem for the component that determines the frequency of
torsional oscillations

({—p) d dv d dv
~AF = (b )—26,2(1—p>7iz—(h3?)=zhu (4.1)
v0)=vk) =0 (4.2)
and the boundary value problem for the combined longitudinal and transverse oscillations -
d du d
— (A5 )+ u ()= M (4.3)
d?
—ph T+ hw+ 87— (W) = A
w (0) = w (k) = 0, :’z‘: ) = d’;xgw =0 (4.4)
du __ dulk) _ _ _h
= O=—7F—=0 &'=pp

Let the shell thickness & (z) vary as given by (3.1), The set @; in this case consists
of functions such that
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k

S(”"“}d <, Jh<t (4.5)
0
For the zeroth approximation we have the equation
— Lol 21— o = — A (4.6)
with boundary conditions (4.2) for the function ¢°(z) and the set of equations
d’ua o, .0
— S e = (4.7)

—0 G+ 0+ S T =

with boundary conditions (4.4) for the functions u’ (z) and w°(z). The eigenvalues of problems
(4.6) and (4.7) can be obtained in this case by taking the natural oscillations in the form

u° (2) = up co8 pz, o° () = v, sin pz, w° (z) = w, sin px (4.8)

where u,, wg v, are certain constants and p = an/k,n =1, 2, ...
The frequencies corresponding to torsional oscillations defined by Eq. (4.6) are specified
by the formula t—p
M =T pr (14 46:) (4.9)

For combined transverse and longitudinal oscillations we have
1
M= (1 + PP+ 8ilpt - (1 — Pt + 8%pt + dptptyre] (4.10)

Let us formulate the problem of choosing the distribution of the thicknesses in the form
(3.1) that satisfy the limits (4.5), in order to minimize the volume, (weight) of a cylindrical
shell whose eigenvalue corresponds to predominantly transverse osillations that are not less
than the same eigenvalue of a shell of constant thickness hy. To separate the first natural
frequency, corresponding to predominantly transverse oscillations we will investigate the
ratio of the amplitudes of the combined longitudinal and transverse oscillations of the form
(4.8) by substituting them into (4.7). This yields the ratioc

u=.;]"z°-=x?“__"_p;., i=2.3 (4.11)

From (4.11) we can establish for the eigenvalue Ay in (4.10) that for p>1 — §? = g’
we have |%|[<1, and for p < a,®, we have |%x|>1. The values of p are calculated to
within quantities of the order of 8%, sSimilarly |{%x|>1when p>a,®, and |[x | <1 when

p < ao' for the eigenvalue Ay in (4.10). This result was obtained earlier in /9/ for
the special case of a cylindrical shell.

Using formula (3.8) we can find the correction to the values of the frequencies M, and

My’, when the shell thickness varies as (3.1).
The operator A!(h)) is represented by the components

) d
Ay =—"—'(h1 d:)’ Am=l"7:—hl
d3 d?
A}¢1=—th—;ﬁ-, An=h1+3'51”7x—.(h17;r)
From (3.8) we have
k
1) = 2 S hy (z) sin? prdz, i==2,3

k
°

= [pug? + 2ppugws + wo? + 3p*0,fwet — AL (g + we)le™
e = uy? + wyt
From formulas (4.10) and (4.11), after transformations, we obtain
k

A7 () =re By (@) sin? prdz, =23 (4.12)
0
_ adp 2 — o e R
=TT =P T k(i—!—u*T

The expression for the first correction to the eigenvalue A,” for torsional oscillations
has a similar form

k
AT (hy) = ro Shysin? prdz,  rya=8k1p%8:2 (1 —p) > 0 (4.13)
[1]
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Since the linear functionals 2> {h) {f = 2, 3} and M, (k,) differ only by constant positive
multipliers, the input problem can be extended to all three forms of oscillations. Let us
determine the thickness distribution of the form (3.1) with limits (4.5) such that the shell
weight is a minimum, and the respective frequencies of longitudinal, transverse, and also
torsional oscillations are not less than the respective freguencies of a shell of constant
thickness hy.  This implies the need to solve the following problem:

x x
Sk;d:c —»mi'n, hye2h, S hy sin® pzdz >0 (4,14)
° 4 °

The golution of variational problem {4.14) can be ocbtained in analytic form /10,11/. The
optimum thickness distribution obtained by exact sclution of the problem ¢* = 18 is shown in

foF
LT

h=1 +a.5h,

rig.?2

¥ig.1 for minimal p = n/k. The solution has a particularly simple form *) when ¢! < (8p%%)/9
ey =— 2R a0 k]

The ralative gain in weight in this case is 33&%. For the case represented in Fig.2
the gain is clese to 50 e%.

An analysis of the results shows that for all three forms of axisymmetric oscillations of
& cylindrical shell the optimum thickness distribution in the middle of the shell is a thick-
ening in the form of a rib which divides the shell into two s horter sections of smaller
thickness. A similar result was obtained in /12/ by numerical calculations for shells of
reasonable length.

5. The non-axisymmetric case. Consider the set of eguations defining the natural
-pscillations of a cylindrical shell {1.1) with boundary conditions that correspond to resting

on ahinged joint {1.3). The form of the natural oscillations of the shell of constant thick-
ness is then .
u (1, &) = u, 608 pz sin g, ¥ (%, @) = vy 8in pz cos g (5.1)
w (s, @) = w,sin prsinga, p==nnk, q=m, mn= 42 ..

where &y, Iy, Wy are constants that are determined, apart from some constant multiplier, in the
solution of the linear system of eguations obtained by the substitution of (5.1) into the
eguation of state {1.1). The eigenvalues A*(i =1,2,3,k =0,1,2,.,.) are obtained from the
condition for the determinant of the set to ke zero.

Let us formulate the problem of designing a shell of minimum volume (weight) whose first
frequencies, which correspond to Qquasitransverse oscillations for which w, > max {u,, v}, and
gquasitangential oscillations for which m, << max iy, vy} /27, are not less than the respective
frequencies of a shell of constant thickness fge

Applying the asymptotic method of Sect, 3, we obtain, using formulas (3.8), the following
expression for the first correction to the salculation of the eigenvalue A% :

¥om
A ) = e S S [A sinpz sindge: + B costpz cosig] by (2, o) dzde {5.2)
[
A = {u,*p? b 2up (g b 1) + (vag 1) + 382[(vy + )¢ +
2up%g (0, -+ @) + P} (0 b 4 A
B e S (g prgt 4 120800 0 4 g
2 u® -+ oyF b &

*) Bratus' A.8. and Kartvelishvili V.M., The method of perturbations in probilems of optimiz-
ation of the stability, oscillation frequencies, and strength «f elastic plates of variable
thickness. Preprint ;@a, 180, Inst. Of Problems of Mechanics, AN 85SR. Moscow, 1981.
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The values of A,° and g depend on the values of k, §,® for minimum p = a/k.

Consider the case when hy/R=0.01 ., Direct calculations using tables /13/ show that the
quantity A defined by Eq. (5.2) remains positive for k=1,2,...9.

This means that the variational problem has the form

]_Asin' %sinlqa.+Bcos’ -E:—cos’qa] hy(z, a)dzda >0 (5.3)

hy (z, a)dzda —min, h&Q
M

Sl Ge Ly,
s e

We select as A& in (5.3) the minimal positive value of all magnitudes defined in (5.2)
for various M° i=1,2,3.

In the cases considered here minimum A corresponds to the eigenvalue 1,° which relates
to quasitransverse oscillations of the shell. -

The solution of problem (5.3) can be
obtained in some cases in analytic form /10,
11/. 1In particular, the solution that does
not reach the limit [k l=1, everywhere, except
on the set of zero measure (lines and points),
has the form

hy = [cos iku—zcosha—-Zd(cos -2ki:+oos2¢a)—

rig. SRS | PR SRR EY

By the previous remark, the parameter e
must satisfy the condition £30.01. In this case the integral constraint in (3.2} was taken

in the form ks T, "
. 5 2 1 ohy \2
V[ () g (ot om coms (5.4)
90

The constraint (5.4) ensures a uniform growth of the derivatives along the directions
that are parallel to the shell directrices and generatrices. The relative gain with respect
to the functiocnal is 1= (2% 4+ 0.25)(4d* — 2d 4+ 0.75)"* . For example, in the case when p =103, a/R =
0.01 and k=4 we have 1n=55e%; Wwhen k=6 n= 33e%.

When the constraint |4, |=1 is taken into account, the solution of problem (5.3) can be
obtained numerically /l1l/. The relative gains are then approximately 1.5 times greater. If
only positive values of quantities A are considered, then |[d|<1. The maximum gain in this
range of variation of d is 100e% when d= 0.5, and the minimum gain is 10¢% when d= —0.125.

The thickness distribution shown in Fig.2 corresponds to k=26, hJ/R =001, =03 . The
shell is presented in developed form, and for better visualization its middle section is partly
cut out. The form of the thickness distribution obtained is a surface with symmetrically
located points of local mixima and minima which are staggered, and alternately turn to the
centre of curvature and away from it. A similar form is obtained for other values. Note the
lines on the shell development which connect the local points of maximum thickness. This is
the line that passes through the middle of the shell and is parallel to the directrix, and
the lines inclined to the shell directrix at an angle y= arctg (k¢/20) . The disposition of
these lines provides additiocnal information that can be used to select the optimum directions
of strengthening elements.

Thickness distributions are shown in Fig.3 on the assumption that #; 1is a function of
only one variable ¢ when hyR=0.01,p=03 and k=4 . The relative gain with respect to the
functional reaches 4089%. In this case the shell has a number of bulges and troughs which
form a corrugated surface. The number of bulges is determined by ¢ for minimum p = a/k.

We note in conclusion that the praposed asymptotic method enables the sensitivity of the
shell natural frequericy and of the thickness distribution near the specified supporting sol-
ution to be investigated. It can also be applied to other types of shells in problems of
stability and oscillation frequency optimization, as well as in problems of shell bending
under distributed loads.
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SOME PROBLEMS OF THE STABILITY OF CYLINDRICAL AND CONICAL SHELLS "

P.E. TOVSTIK

The problem of the buckling of a membrane state of stress of a thin elastic
shell is considered in a linear approximation. It is assumed that the
buckling is accompanied by the formulation of a large number of dents. In
the simplest case when the initial stresses and curvature of the middle
surface are constant, the dents cover the whole shell surface /1-3/. If
the quantities mentioned are not constant, the buckling pattern is comp-
licated; localization of the dents can occur in the neighbourhoods of
certain "weakest" lines /3-5/ or points /6/. The problem of the buckling
of a shell of zero curvature is considered below. This is characterized,
by the fact that the dents are stretched strongly along asymptotic lines
and are localized near one (the weakest). The method is applicable to
convex conical and cylindrical shells of medium length and not absolutely
circular section; the shell edges are not necessarily plane curves. The
two~dimensional problem reduces to a sequence of one~dimensional boundary
value problems, while for a cylindrical shell, under certain particular
assumptions, the approximate solution is obtained in closed form. A conical
shell is considered, and the changes which must be made in the case of a
cylindrical shell are outlined.

1. Let us introduce an orthogonal system of coordinates s, ¢ on the middle surface of
a conical shell, where s=s’R™,5° is the distance to the apex of the cone, R is the charact-
eristic dimension of the middle surface, and @ is a coordinate on the directrix, selected in
such a manner that the first quadratic form of the surface has the form do® = R? (ds* + s*dg?).
Here the radius of curvature is R, = Rsk™. Let the shell be closed in the ¢ direction and
bounded by two edges (@, is the length of the curve formed when the cone and a sphere of
radius R with centre at the apex of the cone intersect)

S @< @, 0o ® (1.1)

We will use the set of shallow-shell equations

AW + M + AD =0, A0 — Aw =0 (1.2)
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